American Water Resources Association
                         AWRA
                    Philadelphia
 

Student Poster Presentations



8 November 2017

Rain Gardens, Runoff and Resilience: Creating the Next Generation of Stormwater Systems

Cara Melissa Albright, Villanova University, Villanova, PA


Abstract: The field of stormwater management has changed dramatically over the last two decades, moving away from a singular vision of flood control and extreme events to that of a more sustainable view of combining runoff quality and quantity and designing across a range of events. As part of this shift, we have moved from detention basins and conveyances to incorporating green infrastructure (GI) in the form of wetlands, pervious pavement, tree trenches, green roofs and rain gardens. While progress has been made, our knowledge of the performance of GI is still evolving. Part of this research is to develop a more holistic approach to design and implementation, which would consider hydrologic, geotechnical, environmental and economic constraints. Additionally, we are focused on utilizing both the infiltration and evapotranspiration (ET) capabilities of GI, depending on the goals and needs of a specific location. We are learning that our current practices underestimate GI performance on a volume capture basis, and fail to optimize the full capabilities of GI with respect to urban hydrology. Two bioinfiltration rain garden hydraulically connected in series, have been instrumented to assess current GI design performance and make recommendations for the next generation of GI systems. These rain gardens run parallel to Girard Avenue in the right-of-way near the Philadelphia Zoo. The site was initially instrumented in 2013 by the Philadelphia Water Department (PWD) to monitor water level. Working with PWD, Villanova further instrumented the site in 2015 to include meteorological measurements, soil moisture sensors, and more extensive water level monitoring. Results from the initial period of monitoring clearly show that these sites outperform expectations, confirming earlier studies at Villanova University and in Philadelphia. Research continues, with the goal of enhancing our understanding of urban hydrologic processes to drive the next generation of designs. This work will include comparing site performance to models of surface and vadose zone hydrology. Our research clearly shows that in order to take advantage of the full potential of GI, we must treat it as a system that integrates climate and surroundings in our designs. Doing so will allow us to set and achieve benchmarks that will maximize the potential of GI and integrate it with broader concepts such as risk, resilience and sustainable communities.


18 October 2017


Flood Management Nature-Based Solutions for Kampen, The Netherlands

Megan Cullison and Iman Elkhashab, Widener University, Chester, PA


Abstract: The city of Kampen in the Netherlands is struggling to combat flooding issues in the low-income neighborhood of Brunnepe. There is a necessity for the solutions to be nature-based, or “green” and be able to create community investment. Cost and practicality is also considered while researching. Site selection was done using resources provided by the City of Kampen, and was based off of storm water accumulation GIS. Large scale projects recommended were a Bio-swale playground and water retention pond. Smaller scale recommendations were a community garden, rain barrels, and flow through planters



© AWRA-PMAS
Powered by Wild Apricot Membership Software